If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=-14t+4.9t^2
We move all terms to the left:
50-(-14t+4.9t^2)=0
We get rid of parentheses
-4.9t^2+14t+50=0
a = -4.9; b = 14; c = +50;
Δ = b2-4ac
Δ = 142-4·(-4.9)·50
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{6}}{2*-4.9}=\frac{-14-14\sqrt{6}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{6}}{2*-4.9}=\frac{-14+14\sqrt{6}}{-9.8} $
| 12a+35-2a=-a=+2 | | -2(5-3x)=10+16x+30 | | 1/3(t+6)-10=-3t-2 | | 7(n+7)=63 | | 4.1x+7-1.1x=10 | | 1/2x+2/3x=2/5x-1/3x | | -50=-14t+4.9t^2 | | 10x+23+8x+55=90 | | 5x+4-8x=-5 | | x-4=2.12 | | 2x+22-1x=-3 | | 7x-2x+1-19=3x-7+x+3 | | 6a^2-8a-25=-3 | | 1/3(x+9)=1/2(x-3)=1 | | 5x+1=18x+11 | | 3x=3(21)=63 | | 6-7x=7x-10-6 | | 5x-10/3=30 | | 18x+11=5x+1 | | 9-n=-7n+3 | | 56b^2+17b-3=0 | | 5/6x+17=1/6x-5 | | -90=78-14x | | 2÷3=8x | | 6x+27+9x-9=180 | | 30-16x+20-8x=180 | | X2-3x=7x | | 1/3+x=4/3 | | 9x-x2=0 | | -5(1-5x)+5(-8x-2)=-4x-8(x+3) | | 4x-12+9x+38=90 | | x/4=4.6 |